p-group, metabelian, nilpotent (class 2), monomial
Aliases: C25.60C22, C23.597C24, C24.404C23, C22.3712+ 1+4, (C2×D4).140D4, C24⋊3C4⋊26C2, (C23×C4)⋊13C22, (C2×C42)⋊33C22, C23.212(C2×D4), C2.102(D4⋊5D4), C23.Q8⋊61C2, C23.175(C4○D4), C23.23D4⋊89C2, C23.11D4⋊86C2, C23.10D4⋊85C2, C2.45(C23⋊3D4), (C22×C4).183C23, C22.406(C22×D4), C2.C42⋊39C22, C24.3C22⋊80C2, (C22×D4).234C22, C24.C22⋊129C2, C2.67(C22.32C24), C2.15(C22.54C24), C2.79(C22.45C24), (C2×C4).99(C2×D4), (C2×C4⋊C4)⋊35C22, (C2×C22≀C2).15C2, (C2×C22⋊C4)⋊31C22, C22.459(C2×C4○D4), (C2×C22.D4)⋊36C2, SmallGroup(128,1429)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.597C24
G = < a,b,c,d,e,f,g | a2=b2=c2=f2=g2=1, d2=e2=ba=ab, ac=ca, ede-1=ad=da, geg=ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, gdg=abd, fg=gf >
Subgroups: 820 in 340 conjugacy classes, 96 normal (22 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22≀C2, C22.D4, C23×C4, C22×D4, C22×D4, C25, C24⋊3C4, C23.23D4, C24.C22, C24.3C22, C23.10D4, C23.Q8, C23.11D4, C2×C22≀C2, C2×C22.D4, C23.597C24
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, 2+ 1+4, C23⋊3D4, C22.32C24, D4⋊5D4, C22.45C24, C22.54C24, C23.597C24
(1 9)(2 10)(3 11)(4 12)(5 21)(6 22)(7 23)(8 24)(13 27)(14 28)(15 25)(16 26)(17 32)(18 29)(19 30)(20 31)
(1 11)(2 12)(3 9)(4 10)(5 23)(6 24)(7 21)(8 22)(13 25)(14 26)(15 27)(16 28)(17 30)(18 31)(19 32)(20 29)
(1 20)(2 17)(3 18)(4 19)(5 14)(6 15)(7 16)(8 13)(9 31)(10 32)(11 29)(12 30)(21 28)(22 25)(23 26)(24 27)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 27 3 25)(2 14 4 16)(5 19 7 17)(6 31 8 29)(9 13 11 15)(10 28 12 26)(18 22 20 24)(21 30 23 32)
(1 29)(2 17)(3 31)(4 19)(6 24)(8 22)(9 18)(10 32)(11 20)(12 30)(13 25)(15 27)
(1 20)(2 19)(3 18)(4 17)(5 26)(6 25)(7 28)(8 27)(9 31)(10 30)(11 29)(12 32)(13 24)(14 23)(15 22)(16 21)
G:=sub<Sym(32)| (1,9)(2,10)(3,11)(4,12)(5,21)(6,22)(7,23)(8,24)(13,27)(14,28)(15,25)(16,26)(17,32)(18,29)(19,30)(20,31), (1,11)(2,12)(3,9)(4,10)(5,23)(6,24)(7,21)(8,22)(13,25)(14,26)(15,27)(16,28)(17,30)(18,31)(19,32)(20,29), (1,20)(2,17)(3,18)(4,19)(5,14)(6,15)(7,16)(8,13)(9,31)(10,32)(11,29)(12,30)(21,28)(22,25)(23,26)(24,27), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,27,3,25)(2,14,4,16)(5,19,7,17)(6,31,8,29)(9,13,11,15)(10,28,12,26)(18,22,20,24)(21,30,23,32), (1,29)(2,17)(3,31)(4,19)(6,24)(8,22)(9,18)(10,32)(11,20)(12,30)(13,25)(15,27), (1,20)(2,19)(3,18)(4,17)(5,26)(6,25)(7,28)(8,27)(9,31)(10,30)(11,29)(12,32)(13,24)(14,23)(15,22)(16,21)>;
G:=Group( (1,9)(2,10)(3,11)(4,12)(5,21)(6,22)(7,23)(8,24)(13,27)(14,28)(15,25)(16,26)(17,32)(18,29)(19,30)(20,31), (1,11)(2,12)(3,9)(4,10)(5,23)(6,24)(7,21)(8,22)(13,25)(14,26)(15,27)(16,28)(17,30)(18,31)(19,32)(20,29), (1,20)(2,17)(3,18)(4,19)(5,14)(6,15)(7,16)(8,13)(9,31)(10,32)(11,29)(12,30)(21,28)(22,25)(23,26)(24,27), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,27,3,25)(2,14,4,16)(5,19,7,17)(6,31,8,29)(9,13,11,15)(10,28,12,26)(18,22,20,24)(21,30,23,32), (1,29)(2,17)(3,31)(4,19)(6,24)(8,22)(9,18)(10,32)(11,20)(12,30)(13,25)(15,27), (1,20)(2,19)(3,18)(4,17)(5,26)(6,25)(7,28)(8,27)(9,31)(10,30)(11,29)(12,32)(13,24)(14,23)(15,22)(16,21) );
G=PermutationGroup([[(1,9),(2,10),(3,11),(4,12),(5,21),(6,22),(7,23),(8,24),(13,27),(14,28),(15,25),(16,26),(17,32),(18,29),(19,30),(20,31)], [(1,11),(2,12),(3,9),(4,10),(5,23),(6,24),(7,21),(8,22),(13,25),(14,26),(15,27),(16,28),(17,30),(18,31),(19,32),(20,29)], [(1,20),(2,17),(3,18),(4,19),(5,14),(6,15),(7,16),(8,13),(9,31),(10,32),(11,29),(12,30),(21,28),(22,25),(23,26),(24,27)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,27,3,25),(2,14,4,16),(5,19,7,17),(6,31,8,29),(9,13,11,15),(10,28,12,26),(18,22,20,24),(21,30,23,32)], [(1,29),(2,17),(3,31),(4,19),(6,24),(8,22),(9,18),(10,32),(11,20),(12,30),(13,25),(15,27)], [(1,20),(2,19),(3,18),(4,17),(5,26),(6,25),(7,28),(8,27),(9,31),(10,30),(11,29),(12,32),(13,24),(14,23),(15,22),(16,21)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 4A | ··· | 4J | 4K | ··· | 4P |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | C4○D4 | 2+ 1+4 |
kernel | C23.597C24 | C24⋊3C4 | C23.23D4 | C24.C22 | C24.3C22 | C23.10D4 | C23.Q8 | C23.11D4 | C2×C22≀C2 | C2×C22.D4 | C2×D4 | C23 | C22 |
# reps | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 1 | 1 | 4 | 8 | 4 |
Matrix representation of C23.597C24 ►in GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 3 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 1 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,3,0,0,0,0,3,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4] >;
C23.597C24 in GAP, Magma, Sage, TeX
C_2^3._{597}C_2^4
% in TeX
G:=Group("C2^3.597C2^4");
// GroupNames label
G:=SmallGroup(128,1429);
// by ID
G=gap.SmallGroup(128,1429);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,336,253,344,758,723,1571,346]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=g^2=1,d^2=e^2=b*a=a*b,a*c=c*a,e*d*e^-1=a*d=d*a,g*e*g=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,g*d*g=a*b*d,f*g=g*f>;
// generators/relations